Independent Subspace Analysis can Cope with the 'Curse of Dimensionality'

نویسندگان

  • Zoltán Szabó
  • András Lörincz
چکیده

We search for hidden independent components, in particular we consider the independent subspace analysis (ISA) task. Earlier ISA procedures assume that the dimensions of the components are known. Here we show a method that enables the non-combinatorial estimation of the components. We make use of a decomposition principle called the ISA separation theorem. According to this separation theorem the ISA task can be reduced to the independent component analysis (ICA) task that assumes one-dimensional components and then to a grouping procedure that collects the respective non-independent elements into independent groups. We show that non-combinatorial grouping is feasible by means of the non-linear f -correlation matrices between the estimated components.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Incremental multi-linear discriminant analysis using canonical correlations for action recognition

Canonical correlations analysis (CCA) is often used for feature extraction and dimensionality reduction. However, the image vectorization in CCA breaks the spatial structure of the original image, and the excessive dimension of vector often brings the curse of dimensionality problem. In this paper, we propose a novel feature extraction method based on CCA in multi-linear discriminant subspace b...

متن کامل

Tensor network subspace identification of polynomial state space models

This article introduces a tensor network subspace algorithm for the identification of specific polynomial state space models. The polynomial nonlinearity in the state space model is completely written in terms of a tensor network, thus avoiding the curse of dimensionality. We also prove how the block Hankel data matrices in the subspace method can be exactly represented by low rank tensor netwo...

متن کامل

Less is More: Non-Redundant Subspace Clustering

Clustering is an important data mining task for grouping similar objects. In high dimensional data, however, effects attributed to the “curse of dimensionality”, render clustering in high dimensional data meaningless. Due to this, recent years have seen research on subspace clustering which searches for clusters in relevant subspace projections of high dimensional data. As the number of possibl...

متن کامل

Low-Rank Tensor Krylov Subspace Methods for Parametrized Linear Systems

We consider linear systems A(α)x(α) = b(α) depending on possibly many parameters α = (α1, . . . ,αp). Solving these systems simultaneously for a standard discretization of the parameter space would require a computational effort growing exponentially in the number of parameters. We show that this curse of dimensionality can be avoided for sufficiently smooth parameter dependencies. For this pur...

متن کامل

Krylov Subspace Methods for Linear Systems with Tensor Product Structure

The numerical solution of linear systems with certain tensor product structures is considered. Such structures arise, for example, from the finite element discretization of a linear PDE on a d-dimensional hypercube. Linear systems with tensor product structure can be regarded as linear matrix equations for d = 2 and appear to be their most natural extension for d > 2. A standard Krylov subspace...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta Cybern.

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2007